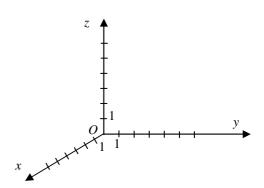
Contrôle continu de mécanique

 $L'usage\ des\ calculatrices\ est\ interdit.$

(Durée: 30 minutes)


NOM: Prénom: Groupe: Note (/20):

1- Exercice :

O étant l'origine d'un repère cartésien $\mathcal{R}\left(O,\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z}\right)$, la position d'un point M de l'espace peut être caractérisée par différents triplets de nombres :

- le triplet cartésien : x, y, z dans la base cartésienne $\mathcal{B}_{ca} = (\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$.
- le triplet cylindrique : ρ , φ , z dans la base cylindrique $\mathcal{B}_{cy} = (\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_{z}})$.
- **Exprimer**, de manière générale, ρ , φ , z en fonction de x, y et z, puis x, y, z en fonction de ρ , φ et z.

Positionner très précisément sur le schéma ci-contre les points $A(2,2,-3)_{g_{ca}}$, $B(2,-2,3)_{g_{ca}}$, $C\left(4\sqrt{2},\frac{\pi}{4},0\right)_{g_{cy}}$ et $D\left(5,\frac{\pi}{2},6\right)_{g_{cy}}$ (Les coordonnées sont données en unité S.I., l'unité étant reportée sur chacun des axes cidessous).

c) Déterminer les vecteurs \overrightarrow{AB} et \overrightarrow{CD} dans la base cartésienne. Calculer alors $\overrightarrow{AB} \cdot \overrightarrow{CD}$ et $\overrightarrow{AB} \times \overrightarrow{CD}$.

2- Question de cours :

Soit deux repères cartésiens $\mathcal{R}\left(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z}\right)$ et $\mathcal{R}'\left(O', \overrightarrow{e'_x}, \overrightarrow{e'_y}, \overrightarrow{e'_z}\right)$, et un point M mobile dans \mathcal{R}' .

Donner la définition de la vitesse d'entraînement, de l'accélération d'entraînement et de l'accélération de Coriolis, liées à M, dans le mouvement de \mathcal{R}' par rapport à \mathcal{R} . Toutes les précisions nécessaires à l'exactitude de ces définitions seront prises en compte dans la notation.